一、CDM项目的具体含义?
CDM -项目的具体内容:
一、CDM规定减排的温室气体
CDM规则当中包含的温室气体有:CO2(二氧化碳)、CH4(甲烷)、N2O(氧化亚氮)、HFCs(氢氟碳化物)、PFCs(全氟化碳)、SF6(六氟化硫)。其中排放一吨CH4相当于排放21吨CO2、排放1吨N2O(氧化亚氮)相当于310吨CO2,排放一吨HFCs(氢氟碳化物)相当于排放140-11,700吨CO2。
二、CDM分布的行业和领域
1.能源工业(可再生能源/不可再生能源)2.能源分配3.能源需求4.制造业5.化工行业6.建筑行业7.交通运输业8.矿产品9.金属生产10.燃料的飞逸性排放(固体燃料,石油和天然气)11.碳卤化合物和六氟化硫的生产和消费产生的逸散排放12.溶剂的使用13.废物处置14.造林和再造林15.农业
三、CDM项目技术
从广泛的意义来看,任何有益于产生温室气体减排和温室气体回收或吸收的技术,都可以作为CDM项目的技术。例如:提高能源效率的技术,包括提高供能效率方面的技术和用能效率方面的技术;新能源和可再生能源技术;温室气体回收利用技术如煤矿甲烷、垃圾填埋沼气回收技术;废弃能源回收技术等等。
四、小型CDM项目类型
(1)可再生能源项目:规定其最大装机容量在1.5万千瓦以内。包括风能、太阳能、水能、生物质能、地热能、潮汐能等;既可以是以发电提供电力的形式,也可以是提供动力、机械能的形式。
(2)提高能效的项目:其每年最大节能量应在1500万千瓦时以内。这方面的例子非常多。
(3)其他方面的项目:其应具有直接排放温室气体、同时其温室气体年排放量应少于1.5万吨CO2。例如,燃料替代项目、垃圾填埋的甲烷回收、煤矿甲烷回收项目等。
二、可再生能源的应用
可再生能源是可以重复生产的,而现在我们市场上占大部分的能源是不可再生的矿物能源如石油、天然气、煤、核能等。既然是不可同生的,那就会越用越少,最后用完,除了会价格越来越贵外,能源问题还会引发人类发展中的种种矛盾和冲突,如阻碍经济发展、战争、环境污染等等诸多问题。为了突破这个制约人类生存和发展的问题,许多国家都将开发可再生能源提高到国家的生存和发展战略层面上来,其必要性可想而知。
可再生能源有风能、太阳能、地热能、海潮海浪能、水力发电、动植物油及其产生的沼气、水电解氢、氢燃料电池、超长寿命的固体电池等等很多种类。
可再生能源的特点是可再生,可持续,有些如太阳能、风能、水力、地热能等大部分还是很环保的能源。
它们在生产和生活中的应用和现在我们在使用的电源、燃气、煤、电池的用途一样。
三、可用于建筑的可再生能源有哪些?有什么特点
太阳能光热系统、光伏系统、风力发电;
餐厨废料、粪便等发酵后产生沼气可以供气、发电
多能源互补
四、现在有哪些可再生能源可以供人类使用?
据我知道的现在除了风力、太阳能、潮汐、还有一种设备JN-10L系列这个设备
属半干馏釜设备,不需消耗外部热源;具有连续不间断生产、产气量大、气体
热值高等特点。可替代天然气,多应用于日常生活用气及取暖、为锅炉提供热
源、发电等;可用于生活垃圾及工业小量有机垃圾的处理及能源再利用。
五、请问废旧电池回收可以做什么?
1.锌锰干电池
(1) 湿法冶金法
该法基于Zn,MnO2可溶于酸的原理,将电池中的Zn,MnO2与酸作用生成可溶性盐进入溶液,溶液经过净化后电解生产金属锌和电解MnO2或生产其它化工产品、化肥等。湿法冶金又分为焙烧-浸出法和直接浸出法。
焙烧-浸出法是将废电池焙烧,使其中的氯化铵、氯化亚汞等挥发成气相并分别在冷凝装置中回收,高价金属氧化物被还原成低价氧化物,焙烧产物用酸浸出,然后从浸出液中用电解法回收金属,焙烧过程中发生的主要反应为:
MeO+C→Me+CO↑
A(s)→A(g)↑
浸出过程发生的主要反应:
Me+2H+→Me2++H2↑
MeO+2H+→Me2++H2O
电解时,阴极主要反应:
Me2++2e→Me
直接浸出法是将废干电池破碎、筛分、洗涤后,直接用酸浸出其中的锌、锰等金属成分,经过滤,滤液净化后,从中提取金属并生产化工产品。
反应式为:
MnO2+4HCl→MnCl2+Cl2↑+2H2O
MnO2+2HCl→MnCl2+H2O
Mn2O3+6HCl→2MnCl2+Cl2↑+3H2O
MnCl2+NaOH→Mn(OH)2+2NaCl
Mn(OH)2+氧化剂→MnO2↓+2HCl
电池中的Zn以ZnO的形式回收,反应式如下:
Zn2++2OH-→ZnO2-→Zn(OH)2(无定型胶体)→ZnO(结晶体)+H2O
(2) 常压冶金法
该法是在高温下使废电池中的金属及其化合物氧化、还原、分解和挥发以及冷凝的过程。
方法一:在较低的温度下,加热废干电池,先使汞挥发,然后在较高的温度下回收锌和其它重金属。
方法二:先在高温下焙烧,使其中的易挥发金属及其氧化物挥发,残留物作为冶金中间产品或另行处理。
湿法冶金和常压治金处理废电池,在技术上较为成熟,但都具有流程长、污染源多、投资和消耗高、综合效益低的共同缺点。1996年,日本TDK公司对再生工艺作了大胆的改革,变回收单项金属为回收做磁性材料。这种做法简化了分离工序,使成本大大降低,从而大幅度提高了干电池再生利用的效益。近年来,人们又开始尝试研究开发一种新的冶金法--真空冶金法:基于废电池各组分在同一温度下具有不同的蒸气压,在真空中通过蒸发与冷凝,使其分别在不同温度下相互分离从而实现综合利用和回收。由于是在真空中进行,大气没有参与作业,故减小了污染。虽然目前对真空冶金法的研究尚少,且还缺乏相应的经济指标,但它明显克服了湿法冶金法和常压冶金法的一些缺点,因而必将成为一种很有前途的方法。
2.镍镉电池
Ni-Cd电池含有大量的Ni,Cd和Fe,其中Ni是钢铁、电器、有色合金、电镀等方面的重要原料。Cd是电池、颜料和合金等方面用的稀有金属,又是有毒重金属,故日本较早即开展了废镍隔电池再生利用的研究开发,其工艺也有干法和湿法两种。干法主要利用镉及其氧化物蒸气压高的特点,在高温下使镉蒸发而与镍分离。湿法则是将废电池破碎后,一并用硫酸浸出后再用H2S分离出镉。
3.铅蓄电池
铅蓄电池的体积较大而且铅的毒性较强,所以在各类电池中,最早进行回收利用,故其工艺也较为完善并在不断发展中。
在废铅蓄电池的回收技术中,泥渣的处理是关键,废铅蓄电池的泥渣物相主要是PbSO4,PbO2,PbO,Pb等。其中PbO2是主要成分,它在正极填料和混合填料中所占重量为41%~46%和24%~28%。因此,PbO2还原效果对整个回收技术具有重要的影响,其还原工艺有火法和湿法两种。火法是将PbO2与泥渣中的其它组分PbSO4,PbO等一同在冶金炉中还原冶炼成Pb。但由于产生SO2和高温Pb尘第二次污染物,且能耗高,利用率低,故将会逐步被淘汰。湿法是在溶液条件下加入还原剂使PbO2还原转化为低价态的铅化合物。已尝试过的还原剂有许多种。其中,以硫酸溶液中FeSO4还原PbO2法较为理想,并具有工业应用价值。
硫酸溶液中FeSO4还原PbO2,还原过程可用下式表示:
PbO2(固)+2FeSO4(液)+2H2SO4(液)→PbSO4(固)+Fe2(SO4)3(液)+2H2O
此法还原过程稳定,速度快,还可使泥渣中的金属铅完全转化,并有利于PbO2的还原:
Pb(固)+Fe2(SO4)3(液)→PbSO4(固)+2FeSO4(液)
Pb(固)+PbO(固)+2H2SO4(液)→2PbSO4(固)+2H2O
还原剂可利用钢铁酸洗废水配制,以废治废。Ni-MH电池、新型的锂离子电池随着近年手持电话和电子设备的发展得到了大量的应用。在日本,Ni-MH电池的产量,1992年达1800万只,1993年达7000万只,到2000年已占市场份额的近50%。可以预计,在不久的将来,将会有大量的废Ni-MH电池产生。这些废Ni-MH电池的正、负极材料中含有许多有用金属,如镍、钴、稀土等。因此,回收Ni-MH电池是十分有益的,有关它们的再生利用技术亦在积极开发中。
科技尤其是信息技术的发展,使得世界对电池的需求只会增多而不会减少,随之造成的电池污染和天然能源的消耗也将大大增加。各种回收利用技术虽日臻完善但毕竟治标不治本。因此科学家们提出了发展有利于环境保护与可持续发展的新型绿色环保电池。新型绿色环保电池是指近年来已投入使用或正在研制开发的一类高性能、无污染的电池。目前已经大量使用的金属氢化物镍蓄电池、锂离子蓄电池、正在推广应用的无汞碱性锌锰原电池和可充电电池都属于这一范畴;正在研制开发的聚合物锂或锂离子蓄电池、燃料电池、电化学贮能超级电容器等也可列入这一范畴。
从普莱德发明第一只铅蓄电池以来,化学电池已经有了140年的历史,其家族也日益壮大。但是,大量生产电池而造成的资源消耗和废电池所带来的环境污染也是有目共睹的。早在1992年,巴西召开的世界环境发展大会上通过的21世纪议程中就已明确提出了可持续发展的方针。与地球和谐相处,走保护环境和可持续发展的道路,是工业发展的大势所趋。加强废电池的环境管理:出台相应的法规政策并不断完善和发展废电池回收技术,扩大回收范围,即使尚无能力处理的也要有相应的措施,如填埋处理等。回收技术应朝着降低成本、尽量避免二次污染的方向发展。同时走发展新型绿色环保电池之路:发展高能量、无污染的绿色电池,在制造之初就将环境污染和资源消耗控制在最小。从而使生产和再生利用形成一个良性循环,才能真正做到利于民又无害于民、无害于自然。