一、镁基轻合金用途?
镁合金主要用于航空、航天、运输、化工、火箭等工业部门。镁合金是以镁为基础加入其他元素组成的合金。镁合金的优点是密度低、比性能好、减震性能好、导电导热性能良好、工艺性能良好。缺点是耐蚀性能差、易于氧化燃烧、耐热性差。
镁合金的用途 镁合金的用途有哪些
镁合金加工过程及腐蚀和力学性能有许多特点:散热快、质量轻、刚性好、具有一定的耐蚀性和尺寸稳定性、抗冲击、耐磨、衰减性能好及易于回收;另外还有高的导热和导电性能、无磁性、屏蔽性好和无毒的特点。
二、医用钴基合金的优点?
一般钴基高温合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。
适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。
碳化物强化相 钴基高温合金中最主要的碳化物是 MC﹑M23C6和M6C在铸造钴基合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。
在有些合金中,细小的M23C6能与基体γ形成共晶体。
MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。
三、镁基合金力学性能?
随着人们对材料强度和节能降耗要求的不断提高,轻金属元素镁及镁基复合材料在航空航天和汽车行业的应用引起研究人员的极大关。
纳米颗粒(如SiC、Cu、Al2O3、CNTs)及其混合物增强镁基复合材料得到广泛研究以期获得最优的强度,但对其高比强度的研究还不深入,需进一步研究。
本实验,采用石墨烯纳米片做增强相颗粒来提高镁基复合材料的机械强度,此外,也探索了金属-石墨烯、金属-金属复合强化颗粒的添加对纯镁显微结构及力学性能的影响。
实验发现石墨烯纳米片与少量铝颗粒复合添加可使石墨烯和镁基体界面结合良好。主要内容总结如下:
首先研究了单独添加石墨烯纳米片对纯镁的影响,试验表明,石墨烯纳米片的加入可提升纯镁的抗拉强度,但塑性会有所降低。
虽然石墨烯纳米片可强化镁基体,但强度提升幅度不大,其原因在于石墨烯纳米片与镁基体的界面结合效果不佳。
然而少量铝的加入可有效改善石墨烯与镁基体的结合,当铝含量保持在1.0wt%,石墨烯纳米片含量为0.09~0.3wt%,0.3%,复合材料的抗拉强度和塑性均增加,这是因为越来越多的石墨烯纳米片位向与挤压方向趋于一致,从而达到阻碍基体断裂的效果。
另一方面,当石墨烯纳米片含量维持在0.18wt%,铝颗粒含量为0.5%~1.0wt%时,复合材料的抗拉强度和塑性也同时增加。
复合材料机械强度的提高,可用基本的强化机制解释,即强化相与基体热膨胀系数的不同,Orowan环及载荷转移机制。
第二,研究了符合添加石墨烯和碳纳米管对镁基体的强化作用。对于只添加石墨烯纳米片或多壁碳纳米管强化复合材料,石墨烯纳米片-碳纳米管-铝颗粒混合添加强化复合材料具有更高的拉伸失效应变,拉伸失效应变(%)的显著增加说明石墨烯纳米片和多壁碳纳米管对镁基体的协同强化作用效果明显,原因如下:
(a)一维多壁碳纳米管的引入阻碍了二维石墨烯纳米片的快速聚集。
(b)基体中即软又长的多壁碳纳米管桥接相邻的石墨烯纳米片形成三维复合结构,从而阻挡了它们的聚集,使得碳纳米管+石墨烯纳米片复合结构与基体的接触面积增大。
第三,研究了添加石墨烯纳米片对Mg-10Ti合金力学性能的影响,室温拉伸结果表明,钛和钛-石墨烯纳米片复合加入镁基体,复合材料的抗拉强度和失效应变均增加。
此外,还研究了铜-石墨烯纳米片复合添加对纯镁力学性能的影响,试验发现铜含量保持在1.0wt%,石墨烯纳米片含量为0.18%~0.36wt%,材料强度和失效应变随之增加,然而,由于GNPs的团聚,当GNPs的含量从0.36%增加到0.54%时,失效应变逐渐下降。
当继续增加其含量时,由于石墨烯纳米片的团聚,失效应变逐渐下降,直到石墨烯纳米片含量增加到0.54wt%。
第四,采用粉末冶金法,研究了石墨烯纳米片对Mg-1Al-Sn合金拉伸强度的影响,试验表明,向Mg-1Al-Sn合金中加入0.18wt%的石墨烯纳米片,合金抗拉强度提高塑性降低。,复合材料强度的提升可由基本的强化机制解释。
第五,研究了不同金属混合颗粒的添加对纯镁的影响,试验发现当复合添加10wt%Ti和10%Ti-1%Al颗粒时,Al元素对Ti颗粒与Mg基体界面结合的改善,Mg基复合材料的强度和塑形均得到提高。
此外,也研究了复合添加Al、Cu颗粒对镁基体的影响,发现Cu颗粒在Mg基体中弥散分布,因此,当1.0wt.%Al-0.6wt.%Cu颗粒混合添加时,可同时提升材料强度和塑性。
另一方面,当Cu含量保持不变,Al含量从1%增加到9%,复合材料的硬度、抗拉和抗压强度均有所提高。当Al含量在3wt.%以下时,随Al含量的增加,材料拉伸失效应变相应增大。当复合材料中Al含量从6wt%变化到9wt%时,由于脆性中间化合物Mg17Al12的产生,拉伸失效应变具有下降趋势。金属颗粒强化镁基复合材料机械强度的提升,在于基体与强化颗粒的热膨胀系数不同,造成界面处位错钉扎,同时,Orowan环和载荷也由软基体向硬质相或第二相转移。
四、镁基轻合金是什么材料?
金属基复合材料(metal matrix composite),简称(MMC)是以金属及其合金为基体,与一种或几种金属或非金属增强相人工结合成的复合材料。其增强材料大多为无机非金属,如陶瓷、碳、石墨及硼等,也可以用金属丝。它与聚合物基复合材料、陶瓷基复合材料以及碳/碳复合材料一起构成现代复合材料体系。
五、ps塑料可降解吗?
这种不是环保的,普通的要很长时间才能自动降解,因为自然界提供其降解的能量是有限的。目前环保的多数是加淀粉,就是在里面加很多淀粉,这样埋在地下后会很快分解。也有纯降解的高分子,例如聚乳酸,这个自己就会分解。
六、医用钛基合金主要用途?
制药行业,手术器械,人体外科植入物
七、ps塑料是可降解塑料吗?
这种不是环保的,普通的要很长时间才能自动降解,因为自然界提供其降解的能量是有限的。目前环保的多数是加淀粉,就是在里面加很多淀粉,这样埋在地下后会很快分解。也有纯降解的高分子,例如聚乳酸,这个自己就会分解。
八、6号塑料可降解吗?
不可以,6号塑料就是塑料聚苯乙烯,聚苯乙烯本身无毒,但在90℃以上可释出分解出致癌物苯乙烯,并对眼睛和上呼吸道黏膜有刺激、破坏和麻醉作用。
不建议使用塑料杯来泡茶,食品级7号PP塑料材料才能作为茶杯,因为可能有异味,或厂家在其中掺加普通塑料,也不适合泡茶。
最好使用陶瓷杯、耐热玻璃杯来冲泡茶叶。
九、可降解塑料有毒吗?
无。
可降解塑料可能使用的是生物基原料,但也可能含有增强生物降解的添加剂的石油化学原料(或两者的混合物)。生物基原材料通常是天然高分子(如淀粉、纤维素、甲壳质)或农副产品经微生物发酵或合成具有生物降解性的高分子制得,如热塑性淀粉塑料、聚乳酸(PLA)、淀粉/聚乙烯醇等均属这类塑料。
十、泡沫塑料可降解吗?
自然降解需要很多年(大概需要上千年)才能降解。
现在有很多机构正在研究如何使其降解速度加快。但7月3日有一则报道称:加拿大年仅16岁的高中生丹尼尔·伯德通过潜心研究,发现通过一种神奇的假单细胞菌,可以将塑料袋的自然降解过程从最多上千年缩短至短短3个月。